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Abstract

We present an algorithm for locating and orienting a set of sensor arrays that have been deployed
in a scene at unknown locations and orientation angles. This self-calibration problem is solved
using a number of source signals also deployed in the scene. We assume each array can estimate
the time-of-arrival and direction-of-arrival (with respect to the array’s local orientation coordi-
nates) of every source. From this information we compute the array locations and orientations.
We consider four subproblems, in which the source signals or emission times are either known or
unknown. We develop necessary conditions for solving the self-calibration problem and provide
a maximum likelihood solution and corresponding location error estimate.

1. Introduction

Unattended Ground Sensors (UGSs) are becoming increasingly important for providing situational awareness
in battlefield deployments [1]. The basic concept is to deploy a large number of low-cost, self-powered sensors
that acquire and process data. The sensors typically consist of an array of microphones to detect, track, and
classify acoustic signatures. In addition, seismic and low-cost imaging sensors may also be present.

We consider a sensor deployment architecture as shown in Figure 1. A number of low-cost sensors, each
equipped with a local processor, a low-power communication transceiver, and one or more sensing capabil-
ities, is set out in a region. Sensor elements may collect acoustic, seismic, and/or image data. Each sensor
monitors its environment to detect, track, and characterize signatures. The sensed data is processed locally,
and the result is transmitted to a local Central Information Processor (CIP) through a low-power communi-
cation network. The CIP fuses sensor information and transmits the processed information to a more distant
command center.

In order to fuse sensor information at the CIP or command center, it is important to know the location and
orientation of each sensor. Ground sensors are placed in the field by persons, by an air drop, or by artillery
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Figure 1: Sensor network architecture. A number of low-cost sensors are deployed in a region. Each sensor
communicates to a local CIP, which relays information to a more distant command center.

launch. For careful hand placement, accurate location and orientation of the sensors can be assumed;
however, for many sensor deployment situations, it is difficult or impossible to know accurately the location
and orientation of each sensor. One could equip each sensor with a GPS and compass to obtain location and
orientation information, but this adds to the expense and power requirements of the sensor and may increase
susceptibility to jamming. Thus, there is interest in developing methods to self-calibrate the sensor array
with a minimum of additional hardware or processing.

In this paper we consider an approach to array self-calibration using sources in the field. A number of
signal sources are deployed in the same region as the sensors (see Figure 2). Each source generates a unique
signature that is detected by the sensors. From the time-of-arrival (TOA) and direction-of-arrival (DOA) of
each source signal, we compute the unknown locations and orientations of the sensors. We consider four
related subproblems, in which:

1. the source locations and emission times are known,

2. the source locations are known and emission times are unknown,

3. the source locations are unknown and emission times are known,

4. the source locations and emission times are unknown.

Several researchers have considered the problem of array calibration, but less work is devoted to calibrating
networks of sensors. A number of papers have considered calibration of both narrowband and broadband
arrays of sensors to improve direction-of-arrival estimation accuracy [2, 3, 4, 5, 6, 7]. These papers assume
knowledge of the nominal sensor locations high (or perfect) signal coherence between the sensors. Calibration
requirements for acoustic ground sensors are discussed in [8]. Research on blind beamforming considers a
related problem of forming a maximum power beam to a source without computing the source locations [9].
A recent paper considers sensor self-calibration using a single acoustic source that travels in a straight line
[10].

An outline of the paper is as follows. In Section 2 we present a statement of the problem and justify our
assumptions. In Section 3 we first consider necessary conditions for a self-calibration solution and present
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Figure 2: Array self-calibration scenario.

methods for solving the self-calibration problem with a minimum number of sensors and sources. These
methods provide initial estimates for an iterative descent computation needed to obtain maximum likelihood
calibration parameter estimates derived in Section 4. Bounds on the calibration uncertainty are also derived.
Section 5 presents numerical examples to illustrate the approach, and Section 6 presents conclusions and
directions for future work.

2. The Self-Calibration Problem

Assume we have a set of A sensors, each with unknown location {ai = (xi, yi)}A
i=1 and unknown orientation

angle θi with respect to a reference direction (e.g., North). We consider the two-dimensional problem in
which the sensors lie in a plane and the unknown reference direction is azimuth; an extension to the three-
dimensional case is possible using similar techniques.

In the array field are also placed S point source signals at locations {sj = (x̃j , ỹj)}S
j=1. The source locations

may be known or unknown. Each source emits a finite-length signal that begins at time tj ; the emission times
may be known or unknown. We thus consider four related subproblems, depending on the prior knowledge
of the source locations and their emission times.

We initially assume each emitted source signal is detected by all of the sensors in the field (the extension to
partial measurements is considered in Section 4.4) and that each sensor measures the time-of-arrival (TOA)
and direction-of-arrival (DOA) for that source. We denote the measured TOA of source j to sensor i as tij
and the measured DOA as θij .

The DOA measurements are made with respect to a local (to the sensor) frame of reference. The absolute
directions of arrival are not available because the orientation angle of each array is unknown (and must be
estimated in the calibration procedure). The times of arrival are measured with respect to a known, common
time base. The time base can be established either by using the electronic communication network linking
the sensors or by synchronizing the sensor processor clocks before deployment. The time base needs to be
accurate to a number on the order of the sensor’s time of arrival measurement uncertainty (1 msec in the



examples in Section 5).

The set of 2AS measurements are gathered in a vector

X =

[
vec(T )
vec(Θ)

]T

(2AS × 1) (1)

where vec(M) stacks the elements of a matrix M columnwise and where

T =




t11 t12 . . . t1S

t21 t22 . . . t2S
...

...
. . .

...
tA1 tA2 . . . tAS


 , Θ =




θ11 θ12 . . . θ1S

θ21 θ22 . . . θ2S
...

...
. . .

...
θA1 θA2 . . . θAS


 (2)

Each array transmits its 2S TOA and DOA measurements to a central information processor, and these 2AS
measurements form the data with which the CIP computes the array calibration. Note that the communication
cost to the CIP is low, and the calibration processing is entirely performed by the CIP.

Define the parameter vectors

α = [βT , γT ]T (3(A+ S) × 1) (3)

β = [x1, y1, θ1, . . . , xA, yA, θA]T (3A × 1) (4)

γ = [x̃1, ỹ1, t1, . . . , x̃S , ỹS , tS ]T (3S × 1) (5)

We denote the actual TOA and DOA of source signal j at sensor i as τij(α) and φij(α), respectively, and
include their dependence on the parameter vector α; they are computed as:

τij(α) = tj + ‖ai − sj‖/c (6)

φij(α) = θi + � (ai, sj) (7)

where ‖ · ‖ is the Euclidean norm, � (ξ, η) is the angle between the points ξ, η ∈ R2, and c is the signal
propagation velocity.

Each element of X has measurement uncertainty; we model the uncertainty as

X = µ(α) + E (8)

where µ(α) is the noiseless measurement vector whose elements are given by equations (6) and (7) for values
of i, j that correspond to the vector stacking operation in (1), and where E is a random vector with known
probability density function.

The self-calibration problem, then, is given the measurement X , estimate β. Note that none, some, or all of
the parameters in γ may be known depending on the particular subproblem of interest.



3. Existence and Uniqueness of Solutions

In this section we address the existence and uniqueness of solutions to the self-calibration problem and
establish the minimum number of sensors and sources needed to obtain a solution. We assume that every
sensor detects every source and measures both TOA and DOA. In addition, we assume the TOA and DOA
measurements are noiseless. We establish the minimum number of sources and sensors needed to compute
a unique calibration solution and give algorithms for finding the self-calibration solution in the minimal
cases. These algorithms provide initial estimates to an iterative descent algorithm for the practical case of
non-minimal, noisy measurements presented in Section 4.

The four cases below make different assumptions about the source signal parameters. In all four cases the
number of measurements is 2AS, and determination of β involves solving a nonlinear set of equations for
its 3A unknowns. Depending on the case considered, we may also need to estimate the unknown nuisance
parameters in γ. The result in each case is summarized in Table 1.

Case 1: Known source locations and emission times.

A unique solution for β can be found for any number of sensors as long as there are S ≥ 2 sources. In fact, the
location and orientation of each sensor can be computed independently of other sensor measurements. The
location of the ith sensor, ai, is found from the intersection of two circles with centers at the source locations
and with radii (ti1 − t2)/c and (ti2 − t1)/c. The intersection is in general two points; the correct location can
be found using the sign of θi2−θi1. We note that the two circle intersections can be computed in closed-form.
From the known source and sensor locations and the DOA measurements, the sensor orientations can also
be uniquely found.

Case 2: Known source locations, unknown emission times.

For S ≥ 3 sources the location and orientation of each sensor can be computed in closed form independently
of other sensors. A solution procedure is as follows. Consider the pair of sources (s1, s2). Sensor i knows
the angle θi2 − θi1 between these two sources. The set of all possible locations for sensor i is an arc of a
circle whose center and radius can be computed from the source locations (see Figure 3). Similarly, a second
circular arc is obtained from the source pair (s1, s3). The intersection of these two arcs is a unique point and
can be computed in closed form. Once the sensor location is known, its orientation is readily computed from
any of the three DOA measurements.

A solution for Case 2 can also be found using S = 2 sources and A = 2 sensors. The solution requires
a one-dimensional search of a parameter over an finite interval. The known location of s1 and s2 and the
known angle θ11 − θ12 means that array a1 must lie on a known circular arc as in Figure 3. Each location
along the arc determines both source emission times. At exactly one position along the arc, the emission
times are consistent with the measurements from the second sensor.



Table 1: Minimal Solutions for Array Self-Calibration

Case # Unknowns Minimum A, S Comments
Known Locations

Known Times
3A A = 1, S = 2 closed-form solution

Known Locations 3A+ S A = 1, S = 3 closed-form solution

Unknown Times 3A+ S A = 2, S = 2 1-D iterative solution

Unknown Locations
Known Times

3(A − 1) + 2S A = 2, S = 2 closed-form solution

Unknown Locations
Unknown Times

3(A+ S − 1) A = 2, S = 3 or
A = 3, S = 2

2-D iterative solution

Case 3: Unknown source locations, known emission times.

In this case and in Case 4 below, the calibration problem can only be solved to within an unknown translation
and rotation of the entire sensor-source scene because any translation or rotation of the entire scene does not
change the tij and θij measurements. To eliminate this ambiguity, we assume the location and orientation of
the first sensor are known; without loss of generality we set x1 = y1 = θ1 = 0. We solve for the remaining
3(A − 1) parameters in β.

For the case of unknown source locations, a unique solution for β is computable in closed form for S = 2
and any A ≥ 2 (the case A = 1 is trivial). From sensor a1 the range to each source can be computed from
rj = (t1j − tj)/c, and its bearing is known, so the locations of the two sources can be found. The locations
and orientations of the remaining sensors is then computed using the method of Case 1.

Case 4: Unknown source locations and emission times.

For this case it can be shown that an infinite number of calibration solutions exists for A = S = 2,1 but that
a unique solution exists in almost all cases for either A = 2, S = 3 or A = 3, S = 2. In some degenerate
cases, not all of the γ parameters can be uniquely determined, although we do not know of a case for which
the β parameters cannot be uniquely found.

Closed-form calibration solutions are not known for this case, but solutions that require a two-dimensional
search can be found. We outline one such solution that works for either A = 2 and S ≥ 3 or S = 2 and
A ≥ 3. Assume as before that sensor a1 is at location (x1, y1) = (0, 0) with orientation θ1 = 0. If we
knew the two source emission times t1 and t2, we can find the locations of sources s1 and s2 as in Case 3.
From the two known source locations, all remaining sensor locations and orientations can be found using
the procedure in Case 1, and then all remaining source locations can be found using triangulation from the
known arrival angles and known sensor locations. The solutions will be inconsistent except for the correct
values of t1 and t2. The calibration procedure, then, is to iteratively adjust t1 and t2 to minimize the error

1Note that for A = S = 2 there are 8 measurements and 9 unknown parameters. The set of possible solutions in general lies on a
one-dimensional manifold in the 9-dimensional parameter space.
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Figure 3: A circular arc is the locus of possible sensor locations whose angle between two known points is
constant.

between computed and measured time delays and arrival angles.

4. Maximum Likelihood Self-Calibration

In this section we derive a maximum likelihood (ML) estimator for the unknown array location and orientation
parameters. The algorithm involves the solution of a set of nonlinear equations for the unknown parameters
(and the unknown nuisance parameters in γ). The solution is found by iterative minimization of a cost
function; we use the methods in Section 3 to initialize the iterative descent. In addition, we derive the
Cramer-Rao Bound (CRB) for the variance of the unknown parameters in α; the CRB also gives high-SNR
parameter variance of the ML parameter estimates.

4.1 The Maximum Likelihood Estimate

We assume the measurement uncertainty E in equation (8) is Gaussian with zero mean and known covariance
Σ. In this case the likelihood function is

f(X;α) =
1

(2πσtσθ)AS
exp

{
−1
2
Q(X;α)

}
(9)

Q(X;α) = [X − µ(α)]TΣ−1[X − µ(α)] (10)

A special case is when the measurement errors are uncorrelated and the TOA and DOA measurement errors
are Gaussian with zero mean and variances σ2

t and σ2
θ , respectively; then equation (10) becomes

Q(X;α) =
A∑

i=1

S∑
j=1

[
(tij − τij(α))2

σ2
t

+
(θij − φij(α))2

σ2
θ

]
(11)

In the four cases considered in Section 3, some of the parameters in α are known. We denote α1 to be the
unknown parameters in α and α2 to be the known parameters for the particular case of interest. Using this



notation along with equation (9), the maximum likelihood estimate of α1 is

α̂1,ML = argmax
α1

f(X,α2;α) = argmin
α1

Q(X;α) (12)

4.2 Nonlinear Least Squares Solution

The solution of (12) involves solving a nonlinear least squares problem. A standard iterative descent procedure
can be used, initialized using one of the solutions in Section 3. In our implementation we used the Matlab
function lsqnonlin.

The straightforward nonlinear least squares solution we adopted converged quickly (in several seconds for
all examples tested) and displayed no symptoms of numerical instability; however, alternative methods for
solving equation (12) may reduce computation. One can divide the parameter set and iterate first on the sensor
location parameters and second on the remaining parameters. Although the sensor orientations and source
parameters depend nonlinearly on the sensor locations, computationally efficient approximations exist (see,
e.g., [11]), so the computational savings of lower dimensional searches may exceed the added computational
cost of iterations nested in iterations if the methods are tuned appropriately. Similarly, one can view the
source parameters as nuisance parameters and employ estimate-maximize (EM) algorithms to obtain the ML
solution [12].

4.3 Estimation Accuracy

The Cramer-Rao Bound (CRB) gives a lower bound on the covariance of any unbiased estimate of α1. It is
a tight bound in the sense that α̂1,ML has parameter uncertainty given by the CRB for high signal-to-noise
ratio; that is, as maxi Σii → 0. Thus, the CRB is a useful tool for analyzing calibration uncertainty.

The CRB can be computed from the Fisher Information Matrix of α1. The Fisher Information Matrix is
given by [13]

Iα1 = E
{
[∇α1 ln f(T,Θ;α)] [∇α1 ln f(T,Θ;α)]T

}
The partial derivatives are readily computed from equations (9), (6), and (7); we find that

Iα1 = [G′(α1)]TΣ−1[G′(α1)] (13)

where G′(α1) is the 2AS × dim(α1) matrix whose ijth element is ∂µi(α1)/∂(α1)j .

For Cases 3 and 4, the Fisher information matrix is rank deficient due to the translational and rotational
ambiguity in the self-calibration solution in those two cases. In this situation, two approaches can be taken.

First, one can assume some of the sensor parameters are known. Examples are to assume known location
and orientation of a single sensor, or to assume known location of two sensors. These assumptions might be
realized by equipping one sensor with a GPS and a compass, or by equipping two sensors with GPSs. Let
α̃1 denote the vector obtained by removing these assumed known parameters from α1. To compute the CRB
matrix for α̃1 in this case, we first remove all rows and columns in Iα1 that correspond to the assumed known
parameters then invert the remaining matrix [13]:

Cα̃1 = [Iα̃1 ]
−1 (14)



The second approach is to compute the CRB of the parameter vectorα1 subject to knowledge of the translation
and rotation. To do so we compute an eigenvalue decomposition of Iα1 :

Iα1 = [U1U2]

[
Λ1 0
0 0

] [
UT

1
UT

2

]
(15)

Except in degenerate cases (in which, for example, all sensors and at least one source signal are collinear), it
can be shown that U2 has 3 columns and that its columns span the subspace corresponding to overall scene
translation and rotation. Then the constrained CRB of the parameter vector α1 subject to knowledge of the
translation and rotation is given by the pseudoinverse of Iα1 [14]:

C̃α = (Iα)
† = U1Λ−1

1 UT
1 (16)

4.4 Partial Measurements

So far we have assumed that every sensor detects and measures both the TOA and DOA from every source
signal. In this section we relax that assumption. We assume each emitted source signal is detected by only
a subset of the sensors in the field and that a sensor that detects a source may measure the time-of-arrival
(TOA) and/or the Direction-of-Arrival (DOA) for that source, depending on its capabilities. We denote the
availability of a measurement using two indicator functions It

ij and Iθ
ij , where

It
ij , I

θ
ij ∈ {0, 1} (17)

If sensor i measures the TOA (DOA) for source j, then It
ij = 1 (Iθ

ij = 1); otherwise, the indicator function
is set to zero. Furthermore, let L denote the 2AS × 1 vector whose kth element is 1 if Xk is measured and is
0 if Xk is not measured; L is thus obtained by forming A × S matrices It and Iθ and stacking their column
into a vector as in equation (1). Finally, define X̃ to be the vector formed from elements of X for which
measurements are available, so Xk is in X̃ if Lk = 1.

The maximum likelihood estimator for the partial measurement case is similar to equation (12) but uses only
those elements of X for which the corresponding element of L is one. Thus,

α̂1,ML = argmin
α1

Q̃(X̃;α) (18)

where (assuming uncorrelated measurement errors as in equation (11)),

Q̃(X̃;α) =
A∑

i=1

S∑
j=1

[
(tij − τij(α))2

σ2
t

It
ij +

(θij − φij(α))2

σ2
θ

Iθ
ij

]
(19)

The Fisher Information Matrix for this case is similar to equation (13), but includes only information from
available measurements; thus

Ĩα1 = [G̃′(α1)]TΣ−1[G̃′(α1)] (20)

where [
G̃′(α1)

]
ij
= Li · ∂µi(α1)

∂(α1)j
(21)



We note that when partial measurements are available, the ML calibration may not be unique. For example,
if only TOA measurements are available, a scene calibration solution and its mirror image have the same
likelihoods. A complete understanding of the uniqueness properties of solutions in the partial measurement
case is a topic of current research.

5. Numerical Results

We present some numerical examples of the self-calibration procedure. Ten sensor arrays and eleven sources
are randomly placed in a 2 km×2 km region; the sensor orientations and source emission times are also
randomly chosen. Figure 4 shows the locations of the sensors and sources. We assume every sensor detects
each source emission and measures the TOA and DOA of the source. The measurement uncertainties are
Gaussian with standard deviations of σt = 1msec for the TOAs and σθ = 3◦ for the DOAs. Neither the
locations nor emission times of the sources are assumed to be known, and to eliminate the translation and
rotation uncertainty in the scene, we assume either two sensors have known locations or one sensor has
known location and orientation.

Figure 4 also shows the two standard deviation (2σ) location uncertainty ellipses for both the sources and
sensors assuming the locations of sensor arrays A1 and A2 are known. These ellipses appear as small dots in
the figure; an enlarged view for two sensors are shown in Figure 5. As a quantitative measure of performance,
we compute for each sensor the equivalent 2σ uncertainty radius, defined as the geometric mean of the major
and minor axis lengths of the 2σ uncertainty ellipse. We find that the average of the 2σ uncertainty radii for
all ten sensors is 0.80m for this example.

Figure 6 shows a similar uncertainty plot, but in this case we assume that both the location and orientation of
sensor A1 is known. In comparison with Figure 4, we see much larger uncertainty ellipses for the sensors,
especially in the direction tangent to circles with center at sensor A1. The average 2σ uncertainty radius is
3.28m in this case. The high tangential uncertainty is primarily due to the DOA measurement uncertainty
with respect to a known orientation of sensor A1. By comparing Figures 4 and 6, we see that it is more
desirable to know the locations of two sensors than to know the location and orientation of a single sensor;
thus, equipping two sensors with GPS systems results in lower uncertainty than equipping one sensor with
a GPS and a compass.

Figure 7 shows the effect of increasing the number of sources on the average 2σ uncertainty radius. We plot
the uncertainties found from using from 2 through 11 sources, starting initially with sources S1 and S2 and
adding sources S3, S4, ... S11 at each step. We see the uncertainty reduces dramatically when the number
of sources increases from 2 to 3 and then decreases more gradually as more sources are added. For this
example, an average 2σ uncertainty radius of 1–3 meters is obtained when more than five signal sources are
used for calibration.

The algorithms require low communication overhead as each sensor needs to communicate only 2S scalar
values to the CIP. Computation of the calibration solution takes place at the CIP; for the examples presented
the calibration computation takes on the order of 10 seconds using Matlab on a standard personal computer.



6. Conclusions

We have presented a procedure for calibrating the locations and orientations of a network of sensors. The
calibration procedure uses source signals that are placed in the scene and computes array and source unknowns
from estimated time-of-arrival and/or direction-of-arrival estimates obtained for each source-sensor pair. We
present maximum likelihood solutions to four variations on this problem, depending on whether the source
locations and signal emission times are known or unknown. We also discuss existence and uniqueness
of solutions and algorithms for initializing the nonlinear minimization step in the maximum likelihood
estimation. An analytical expression for the sensor location and orientation error covariance matrix is also
presented for each of the four problem variations. A maximum likelihood calibration algorithm for the case
of partial calibration measurements was also developed.

The algorithms require minimal communications from the sensors to a Central Information Processor, and
computation of the calibration solution takes on the order of ten seconds using Matlab on a standard personal
computer for examples considered.
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Figure 4: Example scene showing ten sensor arrays (stars) and eleven sources (squares). Also shown are the
2σ location uncertainty ellipses of the sensors and sources; these are on average less than 1 m in radius and
show as small dots. The locations of sensors A1 and A2 are assumed to be known.
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Figure 5: Two standard deviation location uncertainty ellipses for sensors A3 (left) and A9 (right) from
Figure 4.
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Figure 6: The 2σ location uncertainty ellipses for the scene in Figure 4 when the location and orientation of
sensor A1 is assumed to be known.
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Figure 7: Average 2σ location uncertainty radius for the scenes in Figures 4 and 6 as a function of the
number of source signals used.


